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Motivation

Overall goal:
to develop a novel model-fitting algorithm for state-space models, to
permit standard “vanilla” algorithms to be efficiently applied.
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@ Frequently used due to the combination of their natural separation of
the different mechanisms acting on the system of interest:

o the latent underlying system process;
e the observation process.
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@ State space models (SSM): an intuitive and flexible class of models.

@ Frequently used due to the combination of their natural separation of
the different mechanisms acting on the system of interest:

o the latent underlying system process;
e the observation process.

@ Price: considerably more complicated fitting to data as the associated
likelihood is typically analytically intractable.

o Common approaches: Data Augmentation (DA) and numerical
integration = often inefficient and/or unfeasible.

@ “Vanilla” MCMC algorithms may perform very poorly due to high
correlation between the imputed states, leading to the need to
specialist algorithms being developed.
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Contributions

@ Semi-Complete Data Augmentation: a Bayesian hybrid
approach efficiently combining DA and numerical integration.

@ Extending the specific semi-complete data likelihood approach of
King et al. (2016) to the the general class of SSM.

@ Improving efficiency while still using “vanilla” MCMC
algorithms.

@ Proposing various integration schemes based on Hidden
Markov Models (HMM) embedding.

@ Utilising the graphical structure of the problem to identify
conditionally independent latent states to “integrate out”.
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State space model

Described via two distinct processes:

Y Np(yt|wt’0)7 (1)
L1 P($t+1|$t,9)a (2)
xo ~ p(0). (3)

o y=(y1,...,yr) — observations;
o x = (x1,...,xr) — latent states
(with &; = [21.¢,...,2p.]" potentially multivariate);

e 0 — static model parameters with a prior p(6).
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State space model (cont’d)

A graphical representation of the general first-order SSM:
squares — observations, circles — unknown latent states.

— Yt+1

1L
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Intractable likelihood

The observed data likelihood for (1)—(3):
p(616) = [ p(y. zl0)iz

— [ ptaole) [T ptonlor. O)p(acle1. )da

t=1
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Intractable likelihood

The observed data likelihood for (1)—(3):
p(616) = [ p(y. zl0)iz

— [ ptaole) [T ptonlor. O)p(acle1. )da

t=1

Estimation challenge: observed data likelihood p(y|0) typically not
available in closed form.
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Intractable likelihood — solutions

Two dominant approaches:
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© Numerical integration:
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Cf.: Andrieu and Roberts (2009), Andrieu et al. (2010).
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@ Data Augmentation (DA):
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Intractable likelihood — solutions

Two dominant approaches:

© Numerical integration:
Deterministic (quadrature) or stochastic (Monte Carlo, Particle
MCMC).
Cf.: Andrieu and Roberts (2009), Andrieu et al. (2010).

Problem: curse of dimensionality — feasible when the integral is
of a very low dimension; or tuning required.

@ Data Augmentation (DA):
Impute latent @ to form the complete data likelihood p(y, xz|0)
available in closed form and use MCMC to marginalise.
Cf.: Tanner and Wong (1987), Frithwirth-Schnatter (1994).

Problem: “vanilla” MCMC' algorithms inefficient: high poste-
rior correlation and hence poor mizring.
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Semi-Complete Data Augmentation

Bayesian hybrid approach: combining DA and numerical
integration.
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Semi-Complete Data Augmentation

Bayesian hybrid approach: combining DA and numerical
integration.

Key idea: separate the latent state & into two components
T = (Ting, Taug), the ‘integrated’ states and the ‘augmented’ states,
respectively.
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Semi-Complete Data Likelihood

Define the semi-complete data likelihood (SCDL) as
P(Y, Taugl@), given by

p(yamaug|0) = /p(yamaugv:zint‘e)dwint

= /p(y|waugawintae)p(maungint|9)dwint~
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Semi-Complete Data Likelihood

Define the semi-complete data likelihood (SCDL) as
P(Y, Taugl@), given by

p(yamaug|0) = /p(yamaugv:zint‘e)dwint

= /p(y|waugawintae)p(maungint|0)dwint~

Used to form the joint posterior distribution:

P(0, Taug|y) X P(Y; Taug|0)p(0)
= p(Y|Taug, 0)p(Taug|0)p(0)
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Auxiliary variables

Specification of the auxiliary variables

Let D;,: and Tj,: be subsets of dimension and time indices of x,
respectively, ‘suitable’ for integration (Daug and Tgyg — their
compliments).
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Auxiliary variables

Specification of the auxiliary variables

Let D;,: and Tj,: be subsets of dimension and time indices of x,
respectively, ‘suitable’ for integration (Daug and Tgyg — their
compliments).

Then the ‘integrated’ and ‘augmented’ states are induced by the
partition of & into

Tint = {Tdt}deDinyteTin  ANA  Taug = {Tdt}deDyny t€Ton,-

For instance:

o for D = 2, Dint = {dg}, Ent = {0,,T} -
‘horizontal’ integration of the second state at all times;

@ Dipe={1,...,D}, Tyt = {2t + 1}th/§ — ‘vertical’ integration of
all states at odd time periods.
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Integration schemes

Two examples of an integration/augmentation scheme:
diamonds — the imputed states, circles — the integrated states, dashed
lines — the relations from the imputed (known) states.

o

(a) Horizontal integration.

(b) Vertical integration
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Lapwings data

y = (y1,...,yr) observations on census (count) data on adult
population of the British lapwing ( Vanellus vanellus).

Popular in statistical ecology, cf.: Besbeas et al. (2002), Brooks et al.
(2004).

1965 1970 1975 1980 1985 1990 1995

Year
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State space model

Y ~ N (Na,0,),
Nity1 ~ P(Naipidie),
Na,t+1 ~ B((N1,t + Napt), Gat),
N1,0 NNB(TLOJQLO)»
Nao ~ NB(74,0,Pa,0)-

The latent state: @ = {IN1, Ng} with Ny = (N11,...,N1,1) and
Ng = (Ng,1,...,Ngr), the population sizes of 1-years and adults,
respectively.
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State space model

Y ~ N (Na,0,),
Nity1 ~ P(Naipidie),
Na,t+1 ~ B((N1,t + Napt), Gat),
N1,0 NNB(TLOJQLO)»
Nao ~ NB(74,0,Pa,0)-

The latent state: @ = {IN1, Ng} with Ny = (N11,...,N1,1) and
Ng = (Ng,1,...,Ngr), the population sizes of 1-years and adults,
respectively.

Time varying parameters:

logit ¢; + = i + Bife, i € {1, a}, log py = o) + Bpf.

(Static) parameters: 6 = (a1, Qq, ap, B1, Ba, Bps 02) 7.
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Integration scheme

SCDL:
integrate out /Ny ; given the imputed value of N, ; and 6;
use the Markov structure of the model to simplify:

P(y, Nal0) = p(y|Na, 0)p(Na|0)

T
= ZPO <Hp(yt|Na,,t7Nl,t)p(Na,t;Nl.t)) .

Ny t=1
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Integration scheme

SCDL:
integrate out /Ny ; given the imputed value of N, ; and 6;
use the Markov structure of the model to simplify:

P(y, Nal0) = p(y|Na, 0)p(Na|0)

T
= ZPO <Hp(yt|Na,,t7Nl,t)p(Na,t;Nl.t)) .

Ny t=1

Idea: write the above marginal pmf as an HMM
(exact result possible, up to the upper bound of the integration).
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Integration scheme

Combining DA and HMM structure. Diamonds — the imputed nodes,
squares — the data, circles — the unknown variables.

QtQ

1 4
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Applications
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Integration scheme

Combining DA and HMM structure. Diamonds — the imputed nodes,
squares — the data, circles — the unknown variables.

QtQ

Removing of the dependence of N, on Ny via integration lead to a
second order HMM on INg,.
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Results

Effective sample sizes (ESS) for M = 10,000 draws:

Method a1 Qg ap B1 Ba Bp
DA ESS 49.071  26.675 20.703  94.289  60.003  18.810
[619.76 ] ESS/sec.  0.079 0.043  0.033 0.152 0.097  0.030
SCDA Exact ESS 229.047 22130 11.331 245.528 98.708 14.136
[948.12 ] ESS/sec.  0.242 0.023  0.012 0.259 0.104  0.015
SCDA Bin30 ESS 246.576  62.439 41.000 259.054 67.991 21.828
[526.24 5] ESS/sec.  0.469 0.119  0.078 0.492 0.129  0.041
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Results (cont’d)
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Stochastic Volatility model

The state space model:

Yt = exp(ht/Q)et
hivi = p+ ¢(he — p) + ony,
€ty Mt Z}\/d N(Ov 1);

o2
ho ~ N (Ah 1_¢2) )
6= (1,0,0°)".
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Stochastic Volatility model

The state space model:

Yt = exp(ht/Q)et
hivi = p+ ¢(he — p) + ony,
€ty Mt Z}\/d N(Ov 1);

2
hO NN (,U/v ]-j¢2> )
0= (1,0,0°)".

Extensions easy to incorporate:

@ SV in the mean of Koopman and Uspensky (2002):
yr = fexp(hy) + exp(he/2)es;
e SV with leverage Jungbacker and Koopman (2007):

corr(eg, nt) = p # 0.
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Data: 7' = 2000 MSFT stock returns to 31 Aug 2017.
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Integration scheme

Combining DA and the HMM-based integration: a single imputation
problem of hoy with the associated integrations. Diamonds — the
imputed states, circles — the integrated states.
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Results

Effective Sample Sizes for M = 10,000 draws:

Method u é o? heoo h1o00 h1soo
DA 17.890 5.347 5.146 138.882 178.258  298.147
SCDA fix 6.403 358.743 5.011 276.54 77.321 18.834
SCDA adapt 205.907 16.490 16.246  521.829 727.313  782.701
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Conclusions

o Semi-Complete Data Augmentation: a novel efficient estimation
method for state space models, combining Data Augmentation with
numerical integration.

@ Integration: to reduce the dependence between the imputed auxiliary
variables (cf. Rao-Blackwellisation).

@ Integration schemes based on the insights from Hidden Markov
Models: specify new transition probabilities between the redefined
states, to be numerically integrated out, conditionally on the auxiliary
variables.

@ “Binning” for further efficiency gains: approximating similar values
of a state with e.g. a single mid-value.
(a natural starting point for any MC based analysis for continuous
states).

@ The split of the latent states into “auxiliary” and “integrated”
variables: model-dependent and specified in such a way that the
algorithm is efficient.
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@ Replacing a deterministic integration with a stochastic one:
importance sampling = what importance distribution?
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@ Replacing a deterministic integration with a stochastic one:
importance sampling = what importance distribution?

o Adopting insights from Bayesian Networks (e.g. d-separation) to
identify conditionally independent latent states in the general
case.
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Conclusions
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Further research

@ Replacing a deterministic integration with a stochastic one:
importance sampling = what importance distribution?

o Adopting insights from Bayesian Networks (e.g. d-separation) to
identify conditionally independent latent states in the general
case.

o High dimensional integration remains a challenging problem =-
SMC samplers (Del Moral et al., 2006)?
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