0000 000000 00000 000 000			SCDA	Applications	
	0000	00000	00000	0000000000	000

Semi-Complete Data Augmentation for Efficient State-Space Model Fitting

Agnieszka Borowska

University of Glasgow Joint with: Ruth King

03.07.2018

	SCDA	Applications	
Outline			
Churne			

Motivation and context

2 State space models

3 Semi-Complete Data Augmentation

4 Applications

- Lapwings data
- Stochastic Volatility model

5 Conclusions

Motivation		SCDA	Applications	
0000	00000	00000	0000000000	000

Motivation and context

Motivation		SCDA	Applications	
0000	00000	00000	0000000000	000
Motivation	ו			

Overall goal:

to develop a novel model-fitting algorithm for state-space models, to permit standard "vanilla" algorithms to be efficiently applied.

Motivation	SCDA	Applications	
0000			
Context			

• State space models (SSM): an <u>intuitive and flexible</u> class of models.

- Frequently used due to the combination of their natural separation of the different mechanisms acting on the system of interest:
 - the latent underlying system process;
 - the observation process.
- **Price**: considerably more complicated fitting to data as the associated likelihood is typically analytically intractable.
- Common approaches: Data Augmentation (DA) and numerical integration ⇒ often inefficient and/or unfeasible.
- "Vanilla" MCMC algorithms may perform very poorly due to high correlation between the imputed states, leading to the need to specialist algorithms being developed.

$ \begin{array}{c} \text{Motivation} \\ \circ \bullet \bullet \bullet \end{array} $	SSM	SCDA	Applications	Conclusions
	00000	00000	00000000000	000
Context				

- State space models (SSM): an <u>intuitive and flexible</u> class of models.
- Frequently used due to the combination of their natural separation of the different mechanisms acting on the system of interest:
 - the latent underlying system process;
 - the observation process.
- **Price**: considerably more complicated fitting to data as the associated likelihood is typically analytically intractable.
- Common approaches: Data Augmentation (DA) and numerical integration ⇒ often inefficient and/or unfeasible.
- "Vanilla" MCMC algorithms may perform very poorly due to high correlation between the imputed states, leading to the need to specialist algorithms being developed.

$ \begin{array}{c} \text{Motivation} \\ \circ \bullet \bullet \bullet \end{array} $	SSM	SCDA	Applications	Conclusions
	00000	00000	00000000000	000
Context				

- State space models (SSM): an <u>intuitive and flexible</u> class of models.
- Frequently used due to the combination of their natural separation of the different mechanisms acting on the system of interest:
 - the latent underlying system process;
 - the observation process.
- Price: considerably more complicated fitting to data as the associated likelihood is typically analytically intractable.
- Common approaches: Data Augmentation (DA) and numerical integration ⇒ often inefficient and/or unfeasible.
- "Vanilla" MCMC algorithms may perform very poorly due to high correlation between the imputed states, leading to the need to specialist algorithms being developed.

4 / 27

$ \begin{array}{c} \text{Motivation} \\ \circ \bullet \bullet \bullet \end{array} $	SSM	SCDA	Applications	Conclusions
	00000	00000	00000000000	000
Context				

- State space models (SSM): an <u>intuitive and flexible</u> class of models.
- Frequently used due to the combination of their natural separation of the different mechanisms acting on the system of interest:
 - the latent underlying system process;
 - the observation process.
- Price: considerably more complicated fitting to data as the associated likelihood is typically analytically intractable.
- Common approaches: Data Augmentation (DA) and numerical integration ⇒ often inefficient and/or unfeasible.
- "Vanilla" MCMC algorithms may perform very poorly due to high correlation between the imputed states, leading to the need to specialist algorithms being developed.

$ \begin{array}{c} \text{Motivation} \\ \circ \bullet \bullet \bullet \end{array} $	SSM	SCDA	Applications	Conclusions
	00000	00000	00000000000	000
Context				

- State space models (SSM): an <u>intuitive and flexible</u> class of models.
- Frequently used due to the combination of their natural separation of the different mechanisms acting on the system of interest:
 - the latent underlying system process;
 - the observation process.
- Price: considerably more complicated fitting to data as the associated likelihood is typically analytically intractable.
- Common approaches: Data Augmentation (DA) and numerical integration ⇒ often inefficient and/or unfeasible.
- "Vanilla" MCMC algorithms may perform very poorly due to high correlation between the imputed states, leading to the need to specialist algorithms being developed.

Motivation		SCDA	Applications	
0000				
Contributio	ns			

- Semi-Complete Data Augmentation: a Bayesian hybrid approach efficiently combining DA and numerical integration.
- Extending the specific semi-complete data likelihood approach of King et al. (2016) to the the general class of SSM.
- **Improving efficiency** while still using "vanilla" MCMC algorithms.
- Proposing various integration schemes based on Hidden Markov Models (HMM) embedding.
- Utilising the graphical structure of the problem to identify conditionally independent latent states to "integrate out".

Motivation		SCDA	Applications	
0000	00000	00000	0000000000	000
Contribution	S			

- Semi-Complete Data Augmentation: a Bayesian hybrid approach efficiently combining DA and numerical integration.
- Extending the specific semi-complete data likelihood approach of King et al. (2016) to the the general class of SSM.
- **Improving efficiency** while still using "vanilla" MCMC algorithms.
- Proposing various integration schemes based on Hidden Markov Models (HMM) embedding.
- Utilising the graphical structure of the problem to identify conditionally independent latent states to "integrate out".

Motivation		SCDA	Applications	
000	00000	00000	0000000000	000
Contribution	IS			

- Semi-Complete Data Augmentation: a Bayesian hybrid approach efficiently combining DA and numerical integration.
- Extending the specific semi-complete data likelihood approach of King et al. (2016) to the the general class of SSM.
- **Improving efficiency** while still using "vanilla" MCMC algorithms.
- Proposing various integration schemes based on Hidden Markov Models (HMM) embedding.
- Utilising the graphical structure of the problem to identify conditionally independent latent states to "integrate out".

Motivation		SCDA	Applications	
000	00000	00000	0000000000	000
Contribution	IS			

- Semi-Complete Data Augmentation: a Bayesian hybrid approach efficiently combining DA and numerical integration.
- Extending the specific semi-complete data likelihood approach of King et al. (2016) to the the general class of SSM.
- Improving efficiency while still using "vanilla" MCMC algorithms.
- Proposing various integration schemes based on Hidden Markov Models (HMM) embedding.
- Utilising the graphical structure of the problem to identify conditionally independent latent states to "integrate out".

Motivation		SCDA	Applications	
0000	00000	00000	0000000000	000
Contribution	S			

- Semi-Complete Data Augmentation: a Bayesian hybrid approach efficiently combining DA and numerical integration.
- Extending the specific semi-complete data likelihood approach of King et al. (2016) to the the general class of SSM.
- Improving efficiency while still using "vanilla" MCMC algorithms.
- Proposing various integration schemes based on Hidden Markov Models (HMM) embedding.
- Utilising the **graphical structure** of the problem to identify conditionally independent latent states to "integrate out".

	SSM	SCDA	Applications	
0000	0000	00000	0000000000	000

State space models

	SSM	SCDA	Applications	
	0000			
State spac	e model			

Described via two distinct processes:

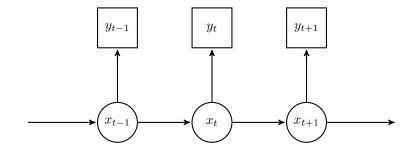
$$\boldsymbol{y}_t \sim p(\boldsymbol{y}_t | \boldsymbol{x}_t, \boldsymbol{\theta}), \tag{1}$$

$$\boldsymbol{x}_{t+1} \sim p(\boldsymbol{x}_{t+1} | \boldsymbol{x}_t, \boldsymbol{\theta}),$$
 (2)

$$\boldsymbol{x}_0 \sim p(\boldsymbol{\theta}).$$
 (3)

- $\boldsymbol{y} = (y_1, \ldots, y_T)$ observations;
- $\boldsymbol{x} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_T) \text{latent states}$ (with $\boldsymbol{x}_t = [x_{1,t}, \dots, x_{D,t}]^T$ potentially multivariate);
- $\boldsymbol{\theta}$ static model parameters with a prior $p(\boldsymbol{\theta})$.

A graphical representation of the general first-order SSM: squares – observations, circles – unknown latent states.



	SSM	SCDA		
0000	00000	00000	0000000000	000
Intractable likelihood				

The observed data likelihood for (1)-(3):

$$p(\boldsymbol{y}|\boldsymbol{\theta}) = \int p(\boldsymbol{y}, \boldsymbol{x}|\boldsymbol{\theta}) d\boldsymbol{x}$$
$$= \int p(x_0|\boldsymbol{\theta}) \prod_{t=1}^T p(y_t|x_t, \boldsymbol{\theta}) p(x_t|x_{t-1}, \boldsymbol{\theta}) d\boldsymbol{x},$$

Estimation challenge: observed data likelihood $p(\mathbf{y}|\boldsymbol{\theta})$ typically not available in closed form.

	SSM	SCDA		
0000	00000	00000	0000000000	000
Intractable likelihood				

The observed data likelihood for (1)-(3):

$$p(\boldsymbol{y}|\boldsymbol{\theta}) = \int p(\boldsymbol{y}, \boldsymbol{x}|\boldsymbol{\theta}) d\boldsymbol{x}$$
$$= \int p(x_0|\boldsymbol{\theta}) \prod_{t=1}^T p(y_t|x_t, \boldsymbol{\theta}) p(x_t|x_{t-1}, \boldsymbol{\theta}) d\boldsymbol{x},$$

Estimation challenge: observed data likelihood $p(\boldsymbol{y}|\boldsymbol{\theta})$ typically not available in closed form.

Intractable	e likelihood	– solutions		
	0000			
	SSM	SCDA	Applications	

Two dominant approaches:

- Numerical integration:
 - Deterministic (quadrature) or stochastic (Monte Carlo, Particle MCMC).
 - Cf.: Andrieu and Roberts (2009), Andrieu et al. (2010).

Problem: curse of dimensionality – feasible when the integral is of a very low dimension; or tuning required.

 Data Augmentation (DA): Impute latent x to form the complete data likelihood p(y, x|θ) available in closed form and use MCMC to marginalise. Cf.: Tanner and Wong (1987), Frühwirth-Schnatter (1994).

Problem: "vanilla" MCMC algorithms inefficient: high posterior correlation and hence poor mixing.

Intractable	e likelihood -	- solutions		
Motivation 0000	00000	5CDA 00000	Applications 00000000000	Conclusions
Motivation	SSM	SCDA		Conclusions

Two dominant approaches:

• Numerical integration:

Deterministic (quadrature) or stochastic (Monte Carlo, Particle MCMC).

Cf.: Andrieu and Roberts (2009), Andrieu et al. (2010).

Problem: curse of dimensionality – feasible when the integral is of a very low dimension; or tuning required.

 Data Augmentation (DA): Impute latent x to form the complete data likelihood p(y, x|θ) available in closed form and use MCMC to marginalise. Cf.: Tanner and Wong (1987), Frühwirth-Schnatter (1994).

Problem: "vanilla" MCMC algorithms inefficient: high posterior correlation and hence poor mixing.

Intractable	e likelihood -	- solutions		
Motivation 0000	00000	5CDA 00000	Applications 00000000000	Conclusions
Motivation	SSM	SCDA		Conclusions

Two dominant approaches:

• Numerical integration:

Deterministic (quadrature) or stochastic (Monte Carlo, Particle MCMC).

Cf.: Andrieu and Roberts (2009), Andrieu et al. (2010).

Problem: curse of dimensionality – feasible when the integral is of a very low dimension; or tuning required.

② Data Augmentation (DA): Impute latent x to form the complete data likelihood p(y, x|θ) available in closed form and use MCMC to marginalise. Cf.: Tanner and Wong (1987), Frühwirth-Schnatter (1994).

Problem: "vanilla" MCMC algorithms inefficient: high posterior correlation and hence poor mixing.

Two dominant approaches:

• Numerical integration:

Deterministic (quadrature) or stochastic (Monte Carlo, Particle MCMC).

Cf.: Andrieu and Roberts (2009), Andrieu et al. (2010).

Problem: curse of dimensionality – feasible when the integral is of a very low dimension; or tuning required.

2 Data Augmentation (DA):

Impute latent \boldsymbol{x} to form the *complete data likelihood* $p(\boldsymbol{y}, \boldsymbol{x}|\boldsymbol{\theta})$ available in closed form and use MCMC to marginalise. Cf.: Tanner and Wong (1987), Frühwirth-Schnatter (1994).

Problem: "vanilla" MCMC algorithms inefficient: high posterior correlation and hence poor mixing.

Two dominant approaches:

• Numerical integration:

Deterministic (quadrature) or stochastic (Monte Carlo, Particle MCMC).

Cf.: Andrieu and Roberts (2009), Andrieu et al. (2010).

Problem: curse of dimensionality – feasible when the integral is of a very low dimension; or tuning required.

2 Data Augmentation (DA):

Impute latent \boldsymbol{x} to form the *complete data likelihood* $p(\boldsymbol{y}, \boldsymbol{x}|\boldsymbol{\theta})$ available in closed form and use MCMC to marginalise. Cf.: Tanner and Wong (1987), Frühwirth-Schnatter (1994).

Problem: "vanilla" MCMC algorithms inefficient: high posterior correlation and hence poor mixing.

9 / 27

		SCDA	Applications	
0000	00000	0000	0000000000	000

Semi-Complete Data Augmentation

 Motivation
 SSM
 SCDA
 Applications
 Conclusions

 0000
 00000
 00000
 000
 000

 C
 1
 D
 A
 1

Semi-Complete Data Augmentation

Bayesian hybrid approach: combining DA and numerical integration.

Key idea: separate the latent state x into two components $x = (x_{ing}, x_{aug})$, the 'integrated' states and the 'augmented' states, respectively.

 Motivation
 SSM
 SCDA
 Applications
 Conclusions

 0000
 00000
 00000
 000
 000
 000

Semi-Complete Data Augmentation

Bayesian hybrid approach: combining DA and numerical integration.

Key idea: separate the latent state x into two components $x = (x_{ing}, x_{aug})$, the 'integrated' states and the 'augmented' states, respectively.

Semi-Complete Data Likelihood

Define the **semi-complete data likelihood** (SCDL) as $p(\boldsymbol{y}, \boldsymbol{x_{aug}} | \boldsymbol{\theta})$, given by $p(\boldsymbol{y}, \boldsymbol{x_{aug}} | \boldsymbol{\theta}) = \int p(\boldsymbol{y}, \boldsymbol{x_{aug}}, \boldsymbol{x_{int}} | \boldsymbol{\theta}) d\boldsymbol{x_{int}}$ $= \int p(\boldsymbol{y} | \boldsymbol{x_{aug}}, \boldsymbol{x_{int}}, \boldsymbol{\theta}) p(\boldsymbol{x_{aug}}, \boldsymbol{x_{int}} | \boldsymbol{\theta}) d\boldsymbol{x_{int}}.$

SCDA

Used to form the **joint posterior** distribution:

$$\begin{split} p(\boldsymbol{\theta}, \boldsymbol{x_{aug}} | \boldsymbol{y}) &\propto p(\boldsymbol{y}, \boldsymbol{x_{aug}} | \boldsymbol{\theta}) p(\boldsymbol{\theta}) \\ &= p(\boldsymbol{y} | \boldsymbol{x_{aug}}, \boldsymbol{\theta}) p(\boldsymbol{x_{aug}} | \boldsymbol{\theta}) p(\boldsymbol{\theta}) \end{split}$$

Semi-Complete Data Likelihood

Define the **semi-complete data likelihood** (SCDL) as $p(\boldsymbol{y}, \boldsymbol{x_{aug}} | \boldsymbol{\theta})$, given by $p(\boldsymbol{y}, \boldsymbol{x_{aug}} | \boldsymbol{\theta}) = \int p(\boldsymbol{y}, \boldsymbol{x_{aug}}, \boldsymbol{x_{int}} | \boldsymbol{\theta}) d\boldsymbol{x_{int}}$ $= \int p(\boldsymbol{y} | \boldsymbol{x_{aug}}, \boldsymbol{x_{int}}, \boldsymbol{\theta}) p(\boldsymbol{x_{aug}}, \boldsymbol{x_{int}} | \boldsymbol{\theta}) d\boldsymbol{x_{int}}.$

SCDA

Used to form the **joint posterior** distribution:

$$\begin{split} p(\boldsymbol{\theta}, \boldsymbol{x_{aug}} | \boldsymbol{y}) &\propto p(\boldsymbol{y}, \boldsymbol{x_{aug}} | \boldsymbol{\theta}) p(\boldsymbol{\theta}) \\ &= p(\boldsymbol{y} | \boldsymbol{x_{aug}}, \boldsymbol{\theta}) p(\boldsymbol{x_{aug}} | \boldsymbol{\theta}) p(\boldsymbol{\theta}) \end{split}$$

		SCDA	Applications	
		00000		
Auxiliary •	variables			

Specification of the auxiliary variables

Let D_{int} and T_{int} be subsets of dimension and time indices of x, respectively, 'suitable' for integration (D_{aug} and T_{aug} – their compliments).

Then the 'integrated' and 'augmented' states are induced by the partition of \boldsymbol{x} into

 $\boldsymbol{x_{int}} = \{x_{d,t}\}_{d \in D_{int}, t \in T_{int}}$ and $\boldsymbol{x_{aug}} = \{x_{d,t}\}_{d \in D_{aug}, t \in T_{aug}}$.

For instance:

- for D = 2, $D_{int} = \{d_2\}$, $T_{int} = \{0, \dots, T\}$ -'horizontal' integration of the second state at all times;
- $D_{int} = \{1, \dots, D\}, T_{int} = \{2t+1\}_{t=0}^{T/2}$ <u>'vertical' integration</u> of all states at odd time periods.

		SCDA	Applications	
		00000		
Auxiliary	variables			

Specification of the auxiliary variables

Let D_{int} and T_{int} be subsets of dimension and time indices of x, respectively, 'suitable' for integration (D_{aug} and T_{aug} – their compliments).

Then the 'integrated' and 'augmented' states are induced by the partition of \boldsymbol{x} into

 $\boldsymbol{x_{int}} = \{x_{d,t}\}_{d \in D_{int}, t \in T_{int}}$ and $\boldsymbol{x_{aug}} = \{x_{d,t}\}_{d \in D_{aug}, t \in T_{aug}}$.

For instance:

- for D = 2, $D_{int} = \{d_2\}$, $T_{int} = \{0, \dots, T\}$ -'horizontal' integration of the second state at all times;
- $D_{int} = \{1, \dots, D\}, T_{int} = \{2t+1\}_{t=0}^{T/2}$ <u>'vertical' integration</u> of all states at odd time periods.

		SCDA	Applications	
		00000		
Auxiliary	variables			

Specification of the auxiliary variables

Let D_{int} and T_{int} be subsets of dimension and time indices of \boldsymbol{x} , respectively, 'suitable' for integration (D_{aug} and T_{aug} – their compliments).

Then the 'integrated' and 'augmented' states are induced by the partition of \boldsymbol{x} into

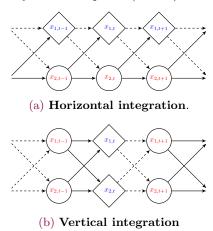
 $\boldsymbol{x_{int}} = \{x_{d,t}\}_{d \in D_{int}, t \in T_{int}} \quad \text{and} \quad \boldsymbol{x_{aug}} = \{x_{d,t}\}_{d \in D_{aug}, t \in T_{aug}}.$

For instance:

- for D = 2, $D_{int} = \{d_2\}$, $T_{int} = \{0, \dots, T\}$ 'horizontal' integration of the second state at all times;
- $D_{int} = \{1, \dots, D\}, T_{int} = \{2t+1\}_{t=0}^{T/2}$ <u>'vertical' integration</u> of all states at odd time periods.

		SCDA	Applications	
		00000		
Integration	n schemes			

Two examples of an **integration/augmentation scheme**: diamonds – the imputed states, circles – the integrated states, dashed lines – the relations *from* the imputed (known) states.



		SCDA	Applications	
0000	00000	00000	000000000	000

Applications

		SCDA	Applications	
0000	00000	00000	0000000000	000
Lapwings of	data			

 $\boldsymbol{y} = (y_1, \ldots, y_T)$ observations on census (count) data on adult population of the British lapwing (Vanellus vanellus). Popular in statistical ecology, cf.: Besbeas et al. (2002), Brooks et al. (2004).

Motivation 0000	SSM	SCDA 00000	Applications $000000000000000000000000000000000000$	Conclusions 000
State space	e model			

$$\begin{split} y_t &\sim \mathcal{N}(N_{a,t}, \sigma_y^2), \\ N_{1,t+1} &\sim \mathcal{P}(N_{a,t}\rho_t\phi_{1,t}), \\ N_{a,t+1} &\sim \mathcal{B}\big((N_{1,t}+N_{a,t}), \phi_{a,t}\big), \\ N_{1,0} &\sim \mathcal{N}\mathcal{B}(r_{1,0}, p_{1,0}), \\ N_{a,0} &\sim \mathcal{N}\mathcal{B}(r_{a,0}, p_{a,0}). \end{split}$$

The latent state: $\boldsymbol{x} = \{N_1, N_a\}$ with $N_1 = (N_{1,1}, \ldots, N_{1,T})$ and $N_a = (N_{a,1}, \ldots, N_{a,T})$, the population sizes of 1-years and adults, respectively.

Time varying parameters:

logit
$$\phi_{i,t} = \alpha_i + \beta_i f_t$$
, $i \in \{1, a\}$, $\log \rho_t = \alpha_\rho + \beta_\rho \tilde{t}$.

(Static) parameters: $\theta = (\alpha_1, \alpha_a, \alpha_\rho, \beta_1, \beta_a, \beta_\rho, \sigma_y^2)^T$.

Motivation 0000	SSM	SCDA	$\begin{array}{c} \text{Applications} \\ \text{00000000000} \end{array}$	Conclusions 000
State space	e model			

$$\begin{split} y_t &\sim \mathcal{N}(N_{a,t}, \sigma_y^2), \\ N_{1,t+1} &\sim \mathcal{P}(N_{a,t}\rho_t\phi_{1,t}), \\ N_{a,t+1} &\sim \mathcal{B}\big((N_{1,t}+N_{a,t}), \phi_{a,t}\big), \\ N_{1,0} &\sim \mathcal{N}\mathcal{B}(r_{1,0}, p_{1,0}), \\ N_{a,0} &\sim \mathcal{N}\mathcal{B}(r_{a,0}, p_{a,0}). \end{split}$$

The latent state: $\boldsymbol{x} = \{N_1, N_a\}$ with $N_1 = (N_{1,1}, \ldots, N_{1,T})$ and $N_a = (N_{a,1}, \ldots, N_{a,T})$, the population sizes of 1-years and adults, respectively.

Time varying parameters:

logit
$$\phi_{i,t} = \alpha_i + \beta_i f_t$$
, $i \in \{1, a\}$, $\log \rho_t = \alpha_\rho + \beta_\rho \tilde{t}$.

(Static) parameters: $\theta = (\alpha_1, \alpha_a, \alpha_\rho, \beta_1, \beta_a, \beta_\rho, \sigma_y^2)^T$.

		SCDA	Applications	
			0000000000	
Integration	scheme			

SCDL:

integrate out $N_{1,t}$ given the imputed value of $N_{a,t}$ and θ ; use the Markov structure of the model to simplify:

$$p(\boldsymbol{y}, \boldsymbol{N_a}|\boldsymbol{\theta}) = p(\boldsymbol{y}|\boldsymbol{N_a}, \boldsymbol{\theta})p(\boldsymbol{N_a}|\boldsymbol{\theta})$$
$$= \sum_{\boldsymbol{N_1}} p_0\left(\prod_{t=1}^T p(y_t|\boldsymbol{N_{a,t}}, \boldsymbol{N_{1,t}})p(\boldsymbol{N_{a,t}}, \boldsymbol{N_{1,t}})\right)$$

Idea: write the above marginal pmf as an HMM (exact result possible, up to the upper bound of the integration).

		SCDA	Applications	
0000	00000	00000	00000000000	000
Integration	scheme			

SCDL:

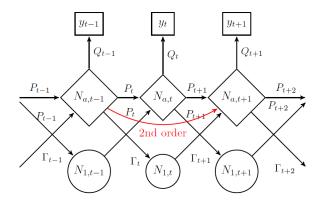
integrate out $N_{1,t}$ given the imputed value of $N_{a,t}$ and θ ; use the Markov structure of the model to simplify:

$$p(\boldsymbol{y}, \boldsymbol{N_a}|\boldsymbol{\theta}) = p(\boldsymbol{y}|\boldsymbol{N_a}, \boldsymbol{\theta})p(\boldsymbol{N_a}|\boldsymbol{\theta})$$
$$= \sum_{\boldsymbol{N_1}} p_0\left(\prod_{t=1}^T p(y_t|\boldsymbol{N_{a,t}}, \boldsymbol{N_{1,t}})p(\boldsymbol{N_{a,t}}, \boldsymbol{N_{1,t}})\right)$$

Idea: write the above marginal pmf as an HMM (exact result possible, up to the upper bound of the integration).

		SCDA	Applications	
0000	00000	00000	0000000000	000
Integration	n scheme			

Combining DA and HMM structure. Diamonds – the imputed nodes, squares – the data, circles – the unknown variables.



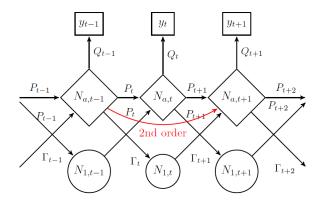
Removing of the dependence of N_a on N_1 via integration lead to a second order HMM on N_a .

Agnieszka Borowska

Semi-Complete Data Augmentation

		SCDA	Applications	
0000	00000	00000	0000000000	000
Integration	n scheme			

Combining DA and HMM structure. Diamonds – the imputed nodes, squares – the data, circles – the unknown variables.



Removing of the dependence of N_a on N_1 via integration lead to a second order HMM on N_a .

Agnieszka Borowska

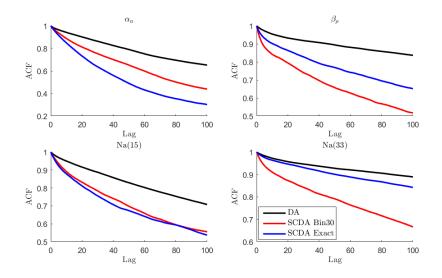
Semi-Complete Data Augmentation

Motivation	SSM	SCDA	$\begin{array}{c} \text{Applications} \\ \text{OOOOOOOOO} \end{array}$	Conclusions
0000	00000	00000		000
Results				

Effective sample sizes (ESS) for M = 10,000 draws:

	-			,			
Method		α_1	α_a	$\alpha_{ ho}$	β_1	β_a	$\beta_{ ho}$
DA	ESS	49.071	26.675	20.703	94.289	60.003	18.810
[619.76 s]	$\mathrm{ESS/sec.}$	0.079	0.043	0.033	0.152	0.097	0.030
SCDA Exact	ESS	229.047	22.130	11.331	245.528	98.708	14.136
[948.12 s]	$\mathrm{ESS/sec.}$	0.242	0.023	0.012	0.259	0.104	0.015
SCDA Bin30	ESS	246.576	62.439	41.000	259.054	67.991	21.828
[526.24 s]	$\mathrm{ESS/sec.}$	0.469	0.119	0.078	0.492	0.129	0.041

Deculta (e	+2-1)			
0000	00000	00000	0000000000	000
		SCDA	Applications	



The state space model:

$$y_t = \exp(h_t/2)\varepsilon_t$$

$$h_{t+1} = \mu + \phi(h_t - \mu) + \sigma\eta_t,$$

$$\varepsilon_t, \eta_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1),$$

$$h_0 \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{1 - \phi^2}\right),$$

$$\boldsymbol{\theta} = (\mu, \phi, \sigma^2)^T.$$

Extensions easy to incorporate:

• SV in the mean of Koopman and Uspensky (2002):

 $y_t = \beta \exp(h_t) + \exp(h_t/2)\varepsilon_t;$

• SV with leverage Jungbacker and Koopman (2007):

 $\operatorname{corr}(\varepsilon_t, \eta_t) = \rho \neq 0.$

 Motivation
 SSM
 SCDA
 Applications
 Conclusions

 0000
 00000
 00000
 00000
 000

 Stochastic Volatility model
 Conclusions
 000

The state space model:

$$y_t = \exp(h_t/2)\varepsilon_t$$

$$h_{t+1} = \mu + \phi(h_t - \mu) + \sigma\eta_t$$

$$\varepsilon_t, \eta_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1),$$

$$h_0 \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{1 - \phi^2}\right),$$

$$\boldsymbol{\theta} = (\mu, \phi, \sigma^2)^T.$$

Extensions easy to incorporate:

• SV in the mean of Koopman and Uspensky (2002):

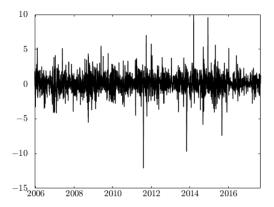
$$y_t = \beta \exp(h_t) + \exp(h_t/2)\varepsilon_t;$$

• SV with leverage Jungbacker and Koopman (2007):

$$\operatorname{corr}(\varepsilon_t, \eta_t) = \rho \neq 0.$$

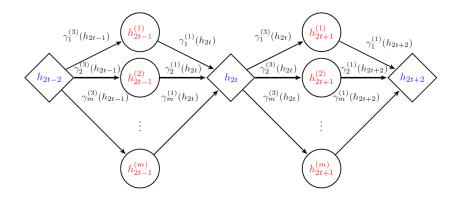
Motivation	SSM	SCDA	Applications	Conclusions
0000	00000	00000	000000000000	000
Data				

Data: T = 2000 MSFT stock returns to 31 Aug 2017.



Motivation 0000	SSM	SCDA	Applications $000000000000000000000000000000000000$	Conclusions 000
Integration	n scheme			

Combining DA and the HMM-based integration: a single imputation problem of h_{2t} with the associated integrations. Diamonds – the imputed states, circles – the integrated states.



Motivation	SSM	SCDA	$\begin{array}{c} \mathbf{Applications} \\ \texttt{00000000000} \bullet \end{array}$	Conclusions
0000	00000	00000		000
Results				

Effective Sample Sizes for M = 10,000 draws:

Method	μ	ϕ	σ^2	h_{600}	h_{1000}	h_{1800}
DA	17.890	5.347	5.146	138.882	178.258	298.147
SCDA fix	6.403	358.743	5.011	276.54	77.321	18.834
SCDA adapt	205.907	16.490	16.246	521.829	727.313	782.701

		SCDA	Applications	Conclusions
0000	00000	00000	0000000000	•00

Conclusions

		SCDA	Applications	Conclusions
0000	00000	00000	0000000000	000
Conclusions	5			

- Semi-Complete Data Augmentation: a novel efficient estimation method for state space models, combining Data Augmentation with numerical integration.
- Integration: to reduce the dependence between the imputed auxiliary variables (cf. Rao-Blackwellisation).
- Integration schemes based on the insights from **Hidden Markov Models:** specify new transition probabilities between the redefined states, to be numerically integrated out, conditionally on the auxiliary variables.
- "Binning" for further efficiency gains: approximating similar values of a state with e.g. a single mid-value. (a natural starting point for any MC based analysis for continuous states).
- The split of the latent states into "auxiliary" and "integrated" variables: model-dependent and specified in such a way that the algorithm is efficient.

		SCDA	Applications	Conclusions
0000	00000	00000	0000000000	000
Conclusions	5			

- Semi-Complete Data Augmentation: a novel efficient estimation method for state space models, combining Data Augmentation with numerical integration.
- Integration: to reduce the dependence between the imputed auxiliary variables (cf. Rao-Blackwellisation).
- Integration schemes based on the insights from **Hidden Markov Models:** specify new transition probabilities between the redefined states, to be numerically integrated out, conditionally on the auxiliary variables.
- "Binning" for further efficiency gains: approximating similar values of a state with e.g. a single mid-value. (a natural starting point for any MC based analysis for continuous states).
- The split of the latent states into "auxiliary" and "integrated" variables: **model-dependent** and specified in such a way that the algorithm is efficient.

		SCDA	Applications	Conclusions
0000	00000	00000	0000000000	000
Conclusions	5			

- Semi-Complete Data Augmentation: a novel efficient estimation method for state space models, combining Data Augmentation with numerical integration.
- Integration: to reduce the dependence between the imputed auxiliary variables (cf. Rao-Blackwellisation).
- Integration schemes based on the insights from **Hidden Markov Models:** specify new transition probabilities between the redefined states, to be numerically integrated out, conditionally on the auxiliary variables.
- "Binning" for further efficiency gains: approximating similar values of a state with e.g. a single mid-value. (a natural starting point for any MC based analysis for continuous states).
- The split of the latent states into "auxiliary" and "integrated" variables: **model-dependent** and specified in such a way that the algorithm is efficient.

		SCDA	Applications	Conclusions
0000	00000	00000	0000000000	000
Conclusions	5			

- Semi-Complete Data Augmentation: a novel efficient estimation method for state space models, combining Data Augmentation with numerical integration.
- Integration: to reduce the dependence between the imputed auxiliary variables (cf. Rao-Blackwellisation).
- Integration schemes based on the insights from **Hidden Markov Models:** specify new transition probabilities between the redefined states, to be numerically integrated out, conditionally on the auxiliary variables.
- "Binning" for further efficiency gains: approximating similar values of a state with e.g. a single mid-value. (a natural starting point for any MC based analysis for continuous states).
- The split of the latent states into "auxiliary" and "integrated" variables: **model-dependent** and specified in such a way that the algorithm is efficient.

		SCDA	Applications	Conclusions
0000	00000	00000	0000000000	000
Conclusions	5			

- Semi-Complete Data Augmentation: a novel efficient estimation method for state space models, combining Data Augmentation with numerical integration.
- Integration: to reduce the dependence between the imputed auxiliary variables (cf. Rao-Blackwellisation).
- Integration schemes based on the insights from **Hidden Markov Models:** specify new transition probabilities between the redefined states, to be numerically integrated out, conditionally on the auxiliary variables.
- "Binning" for further efficiency gains: approximating similar values of a state with e.g. a single mid-value. (a natural starting point for any MC based analysis for continuous states).
- The split of the latent states into "auxiliary" and "integrated" variables: **model-dependent** and specified in such a way that the algorithm is efficient.

		SCDA		Conclusions
0000	00000	00000	0000000000	000
Further re	search			

- Replacing a deterministic integration with a stochastic one: importance sampling ⇒ what importance distribution?
- Adopting insights from Bayesian Networks (e.g. *d-separation*) to identify conditionally independent latent states in the general case.
- High dimensional integration remains a challenging problem ⇒ SMC samplers (Del Moral et al., 2006)?

		SCDA	Applications	Conclusions
				000
Further re	search			

- Replacing a deterministic integration with a stochastic one: importance sampling ⇒ what importance distribution?
- Adopting insights from Bayesian Networks (e.g. *d-separation*) to identify conditionally independent latent states in the general case.
- High dimensional integration remains a challenging problem \Rightarrow SMC samplers (Del Moral et al., 2006)?

		SCDA	Applications	Conclusions
0000	00000	00000	0000000000	000
Further re	search			

- Replacing a deterministic integration with a stochastic one: importance sampling ⇒ what importance distribution?
- Adopting insights from Bayesian Networks (e.g. *d-separation*) to identify conditionally independent latent states in the general case.
- High dimensional integration remains a challenging problem \Rightarrow SMC samplers (Del Moral et al., 2006)?

References I

- Andrieu, C., A. Doucet, and R. Holenstein (2010), "Particle Markov Chain Monte Carlo Methods." Journal of the Royal Statistical Society Series B, 72, 269–342.
- Andrieu, C. and G. Roberts (2009), "The Pseudo-Marginal Approach for Efficient Monte Carlo Computations." Annals of Statistics, 37, 697–725.
- Besbeas, P., S. N. Freeman, B. J. T. Morgan, and E. A. Catchpole (2002), "Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters." *Biometrics*, 58, 540–547.
- Brooks, S. P., R. King, and B. J. T. Morgan (2004), "A Bayesian Approach to Combining Animal Abundance and Demographic Data." Animal Biodiversity and Conservation, 27, 515–529.
- Casella, G. and C. P. Robert (1996), "Rao-Blackwellisation of Sampling Schemes." Biometrika, 83, 81–94.
- Del Moral, P., A. Doucet, and A. Jasra (2006), "Sequential Monte Carlo Samplers." Journal of the Royal Statistical Society: Series B, 68, 411–436.
- Douc, R. and C. P. Robert (2011), "A Vnilla Rao-Blackwellization of Metropolis-Hastings Algorithms." The Annals of Statistics, 39, 261–277.
- Doucet, A., N. De Freitas, K. Murphy, and S. Russell (2000a), "Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks." In Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, 176–183.
- Doucet, A., S. Godsill, and C. Andrieu (2000b), "On Sequential Monte Carlo Sampling Methods for Bayesian Filtering." Statistics and Computing, 10, 197–208.
- Frühwirth-Schnatter, S. (1994), "Data Augmentation and Dynamic Linear Models." Journal of Time Series Analysis, 15, 183–202.

References II

- Jungbacker, B. and S. J. Koopman (2007), "Monte Carlo Estimation for Nonlinear Non-Gaussian State Space Models." Biometrika, 94, 827–839.
- King, R., B. T. McClintock, D. Kidney, and D. Borchers (2016), "Capture-recapture Abundance Estimation using a Semi-complete Data Likelihood Approach." The Annals of Applied Statistics, 10, 264–285.
- Koopman, S. J. and E. Hol Uspensky (2002), "The Stochastic Volatility in Mean Model: Empirical Evidence from International Stock Markets." Journal of Applied Econometrics, 17, 667–689.
- Tanner, M. A. and W. H. Wong (1987), "The Calculation of Posterior Distributions by Data Augmentation." Journal of the American Statistical Association, 82, 528–540.