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Motivation

Overall goal:
to develop a novel model-fitting algorithm for state-space models, to
permit standard “vanilla” algorithms to be efficiently applied.
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Context

State space models (SSM): an intuitive and flexible class of models.

Frequently used due to the combination of their natural separation of
the different mechanisms acting on the system of interest:

the latent underlying system process;
the observation process.

Price: considerably more complicated fitting to data as the associated
likelihood is typically analytically intractable.

Common approaches: Data Augmentation (DA) and numerical
integration ⇒ often inefficient and/or unfeasible.

“Vanilla” MCMC algorithms may perform very poorly due to high
correlation between the imputed states, leading to the need to
specialist algorithms being developed.
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Contributions

1 Semi-Complete Data Augmentation: a Bayesian hybrid
approach efficiently combining DA and numerical integration.

2 Extending the specific semi-complete data likelihood approach of
King et al. (2016) to the the general class of SSM.

3 Improving efficiency while still using “vanilla” MCMC
algorithms.

4 Proposing various integration schemes based on Hidden
Markov Models (HMM) embedding.

5 Utilising the graphical structure of the problem to identify
conditionally independent latent states to “integrate out”.
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State space models
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State space model

Described via two distinct processes:

yt ∼ p(yt|xt,θ), (1)

xt+1 ∼ p(xt+1|xt,θ), (2)

x0 ∼ p(θ). (3)

y = (y1, . . . , yT ) – observations;

x = (x1, . . . ,xT ) – latent states
(with xt = [x1,t, . . . , xD,t]

T potentially multivariate);

θ – static model parameters with a prior p(θ).
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State space model (cont’d)

A graphical representation of the general first-order SSM:
squares – observations, circles – unknown latent states.

xt−1 xt xt+1

yt−1 yt yt+1
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Intractable likelihood

The observed data likelihood for (1)–(3):

p(y|θ) =

∫
p(y,x|θ)dx

=

∫
p(x0|θ)

T∏
t=1

p(yt|xt,θ)p(xt|xt−1,θ)dx,

Estimation challenge: observed data likelihood p(y|θ) typically not
available in closed form.
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Intractable likelihood – solutions

Two dominant approaches:

1 Numerical integration:
Deterministic (quadrature) or stochastic (Monte Carlo, Particle
MCMC).
Cf.: Andrieu and Roberts (2009), Andrieu et al. (2010).

Problem: curse of dimensionality – feasible when the integral is
of a very low dimension; or tuning required.

2 Data Augmentation (DA):
Impute latent x to form the complete data likelihood p(y,x|θ)
available in closed form and use MCMC to marginalise.
Cf.: Tanner and Wong (1987), Frühwirth-Schnatter (1994).

Problem: “vanilla” MCMC algorithms inefficient: high poste-
rior correlation and hence poor mixing.

Agnieszka Borowska Semi-Complete Data Augmentation 03.07.2018 9 / 27



Motivation SSM SCDA Applications Conclusions

Intractable likelihood – solutions

Two dominant approaches:

1 Numerical integration:
Deterministic (quadrature) or stochastic (Monte Carlo, Particle
MCMC).
Cf.: Andrieu and Roberts (2009), Andrieu et al. (2010).

Problem: curse of dimensionality – feasible when the integral is
of a very low dimension; or tuning required.

2 Data Augmentation (DA):
Impute latent x to form the complete data likelihood p(y,x|θ)
available in closed form and use MCMC to marginalise.
Cf.: Tanner and Wong (1987), Frühwirth-Schnatter (1994).
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Semi-Complete Data Augmentation
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Semi-Complete Data Augmentation

Bayesian hybrid approach: combining DA and numerical
integration.

Key idea: separate the latent state x into two components
x = (xing,xaug), the ‘integrated’ states and the ‘augmented’ states,
respectively.
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Semi-Complete Data Likelihood

Define the semi-complete data likelihood (SCDL) as
p(y,xaug|θ), given by

p(y,xaug|θ) =

∫
p(y,xaug,xint|θ)dxint

=

∫
p(y|xaug,xint,θ)p(xaug,xint|θ)dxint.

Used to form the joint posterior distribution:

p(θ,xaug|y) ∝ p(y,xaug|θ)p(θ)

= p(y|xaug,θ)p(xaug|θ)p(θ)
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Auxiliary variables

Specification of the auxiliary variables

Let Dint and Tint be subsets of dimension and time indices of x,
respectively, ‘suitable’ for integration (Daug and Taug – their
compliments).

Then the ‘integrated’ and ‘augmented’ states are induced by the
partition of x into

xint = {xd,t}d∈Dint,t∈Tint
and xaug = {xd,t}d∈Daug,t∈Taug

.

For instance:

for D = 2, Dint = {d2}, Tint = {0, . . . , T} –
‘horizontal’ integration of the second state at all times;

Dint = {1, . . . , D}, Tint = {2t+ 1}T/2t=0 – ‘vertical’ integration of
all states at odd time periods.
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Integration schemes

Two examples of an integration/augmentation scheme:
diamonds – the imputed states, circles – the integrated states, dashed
lines – the relations from the imputed (known) states.

x1,t−1 x1,t x1,t+1

x2,t−1 x2,t x2,t+1

(a) Horizontal integration.

x1,t−1 x1,t x1,t+1

x2,t−1 x2,t x2,t+1

(b) Vertical integration
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Applications
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Lapwings data

y = (y1, . . . , yT ) observations on census (count) data on adult
population of the British lapwing (Vanellus vanellus).
Popular in statistical ecology, cf.: Besbeas et al. (2002), Brooks et al.
(2004).
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State space model

yt ∼ N (Na,t, σ
2
y),

N1,t+1 ∼ P(Na,tρtφ1,t),

Na,t+1 ∼ B
(
(N1,t +Na,t), φa,t

)
,

N1,0 ∼ NB(r1,0, p1,0),

Na,0 ∼ NB(ra,0, pa,0).

The latent state: x = {N1,Na} with N1 = (N1,1, . . . , N1,T ) and
Na = (Na,1, . . . , Na,T ), the population sizes of 1-years and adults,
respectively.
Time varying parameters:

logitφi,t = αi + βift, i ∈ {1, a}, log ρt = αρ + βρt̃.

(Static) parameters: θ = (α1, αa, αρ, β1, βa, βρ, σ
2
y)T .
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Integration scheme

SCDL:
integrate out N1,t given the imputed value of Na,t and θ;
use the Markov structure of the model to simplify:

p(y,Na|θ) = p(y|Na, θ)p(Na|θ)

=
∑
N1

p0

(
T∏
t=1

p(yt|Na,t, N1,t)p(Na,t, N1,t)

)
.

Idea: write the above marginal pmf as an HMM
(exact result possible, up to the upper bound of the integration).
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Integration scheme

Combining DA and HMM structure. Diamonds – the imputed nodes,
squares – the data, circles – the unknown variables.

Removing of the dependence of Na on N1 via integration lead to a
second order HMM on Na.
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Results

Effective sample sizes (ESS) for M = 10, 000 draws:
Method α1 αa αρ β1 βa βρ

DA ESS 49.071 26.675 20.703 94.289 60.003 18.810

[619.76 s] ESS/sec. 0.079 0.043 0.033 0.152 0.097 0.030

SCDA Exact ESS 229.047 22.130 11.331 245.528 98.708 14.136

[948.12 s] ESS/sec. 0.242 0.023 0.012 0.259 0.104 0.015

SCDA Bin30 ESS 246.576 62.439 41.000 259.054 67.991 21.828

[526.24 s] ESS/sec. 0.469 0.119 0.078 0.492 0.129 0.041
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Results (cont’d)
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Stochastic Volatility model

The state space model:

yt = exp(ht/2)εt

ht+1 = µ+ φ(ht − µ) + σηt,

εt, ηt
i.i.d.∼ N (0, 1),

h0 ∼ N
(
µ,

σ2

1− φ2

)
,

θ = (µ, φ, σ2)T .

Extensions easy to incorporate:

SV in the mean of Koopman and Uspensky (2002):

yt = β exp(ht) + exp(ht/2)εt;

SV with leverage Jungbacker and Koopman (2007):

corr(εt, ηt) = ρ 6= 0.
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Data

Data: T = 2000 MSFT stock returns to 31 Aug 2017.
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Integration scheme

Combining DA and the HMM-based integration: a single imputation
problem of h2t with the associated integrations. Diamonds – the
imputed states, circles – the integrated states.
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Results

Effective Sample Sizes for M = 10, 000 draws:

Method µ φ σ2 h600 h1000 h1800

DA 17.890 5.347 5.146 138.882 178.258 298.147

SCDA fix 6.403 358.743 5.011 276.54 77.321 18.834

SCDA adapt 205.907 16.490 16.246 521.829 727.313 782.701
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Conclusions
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Conclusions

Semi-Complete Data Augmentation: a novel efficient estimation
method for state space models, combining Data Augmentation with
numerical integration.

Integration: to reduce the dependence between the imputed auxiliary
variables (cf. Rao-Blackwellisation).

Integration schemes based on the insights from Hidden Markov
Models: specify new transition probabilities between the redefined
states, to be numerically integrated out, conditionally on the auxiliary
variables.

“Binning” for further efficiency gains: approximating similar values
of a state with e.g. a single mid-value.
(a natural starting point for any MC based analysis for continuous
states).

The split of the latent states into “auxiliary” and “integrated”
variables: model-dependent and specified in such a way that the
algorithm is efficient.
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Further research

Replacing a deterministic integration with a stochastic one:
importance sampling ⇒ what importance distribution?

Adopting insights from Bayesian Networks (e.g. d-separation) to
identify conditionally independent latent states in the general
case.

High dimensional integration remains a challenging problem ⇒
SMC samplers (Del Moral et al., 2006)?

Agnieszka Borowska Semi-Complete Data Augmentation 03.07.2018 25 / 27



Motivation SSM SCDA Applications Conclusions

Further research

Replacing a deterministic integration with a stochastic one:
importance sampling ⇒ what importance distribution?

Adopting insights from Bayesian Networks (e.g. d-separation) to
identify conditionally independent latent states in the general
case.

High dimensional integration remains a challenging problem ⇒
SMC samplers (Del Moral et al., 2006)?

Agnieszka Borowska Semi-Complete Data Augmentation 03.07.2018 25 / 27



Motivation SSM SCDA Applications Conclusions

Further research

Replacing a deterministic integration with a stochastic one:
importance sampling ⇒ what importance distribution?

Adopting insights from Bayesian Networks (e.g. d-separation) to
identify conditionally independent latent states in the general
case.

High dimensional integration remains a challenging problem ⇒
SMC samplers (Del Moral et al., 2006)?

Agnieszka Borowska Semi-Complete Data Augmentation 03.07.2018 25 / 27



References

References I

Andrieu, C., A. Doucet, and R. Holenstein (2010), “Particle Markov Chain Monte
Carlo Methods.” Journal of the Royal Statistical Society Series B, 72, 269–342.

Andrieu, C. and G. Roberts (2009), “The Pseudo-Marginal Approach for Efficient
Monte Carlo Computations.” Annals of Statistics, 37, 697–725.

Besbeas, P., S. N. Freeman, B. J. T. Morgan, and E. A. Catchpole (2002), “Integrating
Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and
Demographic Parameters.” Biometrics, 58, 540–547.

Brooks, S. P., R. King, and B. J. T. Morgan (2004), “A Bayesian Approach to
Combining Animal Abundance and Demographic Data.” Animal Biodiversity and
Conservation, 27, 515–529.

Casella, G. and C. P. Robert (1996), “Rao-Blackwellisation of Sampling Schemes.”
Biometrika, 83, 81–94.

Del Moral, P., A. Doucet, and A. Jasra (2006), “Sequential Monte Carlo Samplers.”
Journal of the Royal Statistical Society: Series B, 68, 411–436.

Douc, R. and C. P. Robert (2011), “A Vnilla Rao–Blackwellization of
Metropolis–Hastings Algorithms.” The Annals of Statistics, 39, 261–277.

Doucet, A., N. De Freitas, K. Murphy, and S. Russell (2000a), “Rao-Blackwellised
Particle Filtering for Dynamic Bayesian Networks.” In Proceedings of the Sixteenth
conference on Uncertainty in artificial intelligence, 176–183.

Doucet, A., S. Godsill, and C. Andrieu (2000b), “On Sequential Monte Carlo Sampling
Methods for Bayesian Filtering.” Statistics and Computing, 10, 197–208.
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